Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2216934120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011188

RESUMO

Cells continuously sense external forces from their microenvironment, the extracellular matrix (ECM). In turn, they generate contractile forces, which stiffen and remodel this matrix. Although this bidirectional mechanical exchange is crucial for many cell functions, it remains poorly understood. Key challenges are that the majority of available matrices for such studies, either natural or synthetic, are difficult to control or lack biological relevance. Here, we use a synthetic, yet highly biomimetic hydrogel based on polyisocyanide (PIC) polymers to investigate the effects of the fibrous architecture and the nonlinear mechanics on cell-matrix interactions. Live-cell rheology was combined with advanced microscopy-based approaches to understand the mechanisms behind cell-induced matrix stiffening and plastic remodeling. We demonstrate how cell-mediated fiber remodeling and the propagation of fiber displacements are modulated by adjusting the biological and mechanical properties of this material. Moreover, we validate the biological relevance of our results by demonstrating that cellular tractions in PIC gels develop analogously to those in the natural ECM. This study highlights the potential of PIC gels to disentangle complex bidirectional cell-matrix interactions and to improve the design of materials for mechanobiology studies.


Assuntos
Matriz Extracelular , Hidrogéis , Matriz Extracelular/fisiologia , Comunicação Celular
2.
Dent Mater ; 38(5): 797-810, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35450705

RESUMO

OBJECTIVES: To evaluate the phase composition, microstructure, optical properties and mechanical properties of eight commercially available multilayer and monolayer monolithic dental zirconias. METHODS: Five commercial 3Y-TZP (GC ST, GC HT [GC, Tokyo Japan]; Katana ML, Katana HT [Kuraray Noritake] and Lava Plus [3M Oral Care]) and three Y-PSZ (Katana STML, Katana UTML [Kuraray Noritake]; GC UHT [GC, Tokyo Japan]) zirconia ceramic grades were cut in plate-shaped specimens, sintered according to the manufacturer's instructions and mirror polished. The zirconia chemical composition was determined using X-ray fluorescence (XRF), phase composition was characterized using X-ray diffraction (XRD), while the grain size was measured using scanning electron microscopy (SEM). The translucency Parameter (TP) and Contrast Ratio (CR) were measured with a spectrophotometer (n = 10/group). The indentation fracture toughness (n = 10), Vickers hardness (n = 10) and biaxial strength (n = 20) of the sintered ceramics were assessed. The stress distribution during biaxial testing was assessed by Finite element analysis (FEA). Statistical analysis involved one-way ANOVA and post-hoc Tukey's HSD test and Pearson correlation test (α = 0.05). RESULTS: FEA showed that the stress distribution in plate shape specimens was the same as for disks, rationalizing the use of plates for biaxial strength testing. As expected, higher quantities of Y2O3 were related to a higher cubic ZrO2 phase content and lower tetragonality t-ZrO2, which improved translucency but diminished flexural strength and toughness. While there was no significant correlation between grain size and other material properties, addition of pigments to the zirconia grade statistically negatively affected hardness. CONCLUSION: Even though an improvement in strength and translucency could be recorded for the last Y-TZP generation, future research still needs to strive for combined improvement of optical properties and mechanical reliability of zirconia ceramics.


Assuntos
Materiais Dentários , Ítrio , Cerâmica , Materiais Dentários/química , Teste de Materiais , Reprodutibilidade dos Testes , Propriedades de Superfície , Zircônio/química
3.
Nat Commun ; 12(1): 3192, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045434

RESUMO

Tissues achieve their complex spatial organization through an interplay between gene regulatory networks, cell-cell communication, and physical interactions mediated by mechanical forces. Current strategies to generate in-vitro tissues have largely failed to implement such active, dynamically coordinated mechanical manipulations, relying instead on extracellular matrices which respond to, rather than impose mechanical forces. Here, we develop devices that enable the actuation of organoids. We show that active mechanical forces increase growth and lead to enhanced patterning in an organoid model of the neural tube derived from single human pluripotent stem cells (hPSC). Using a combination of single-cell transcriptomics and immunohistochemistry, we demonstrate that organoid mechanoregulation due to actuation operates in a temporally restricted competence window, and that organoid response to stretch is mediated extracellularly by matrix stiffness and intracellularly by cytoskeleton contractility and planar cell polarity. Exerting active mechanical forces on organoids using the approaches developed here is widely applicable and should enable the generation of more reproducible, programmable organoid shape, identity and patterns, opening avenues for the use of these tools in regenerative medicine and disease modelling applications.


Assuntos
Tubo Neural/citologia , Organoides/fisiologia , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem Celular , Matriz Extracelular/fisiologia , Humanos , Hidrogéis/química , Mecanotransdução Celular/fisiologia , Células-Tronco Pluripotentes , Polietilenoglicóis/química , RNA-Seq , Medicina Regenerativa/métodos , Análise de Célula Única , Engenharia Tecidual/instrumentação
4.
PLoS One ; 16(4): e0249018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33852586

RESUMO

Advances in methods for determining the forces exerted by cells while they migrate are essential for attempting to understand important pathological processes, such as cancer or angiogenesis, among others. Precise data from three-dimensional conditions are both difficult to obtain and manipulate. For this purpose, it is critical to develop workflows in which the experiments are closely linked to the subsequent computational postprocessing. The work presented here starts from a traction force microscopy (TFM) experiment carried out on microfluidic chips, and this experiment is automatically joined to an inverse problem solver that allows us to extract the traction forces exerted by the cell from the displacements of fluorescent beads embedded in the extracellular matrix (ECM). Therefore, both the reconstruction of the cell geometry and the recovery of the ECM displacements are used to generate the inputs for the resolution of the inverse problem. The inverse problem is solved iteratively by using the finite element method under the hypothesis of finite deformations and nonlinear material formulation. Finally, after mathematical postprocessing is performed, the traction forces on the surface of the cell in the undeformed configuration are obtained. Therefore, in this work, we demonstrate the robustness of our computational-based methodology by testing it under different conditions in an extreme theoretical load problem and then by applying it to a real case based on experimental results. In summary, we have developed a new procedure that adds value to existing methodologies for solving inverse problems in 3D, mainly by allowing for large deformations and not being restricted to any particular material formulation. In addition, it automatically bridges the gap between experimental images and mechanical computations.


Assuntos
Simulação por Computador , Fibroblastos/citologia , Imageamento Tridimensional/métodos , Forma Celular , Tamanho Celular , Análise de Elementos Finitos , Humanos , Fenômenos Mecânicos , Microfluídica/métodos , Análise de Célula Única/métodos
5.
Microsc Microanal ; 25(4): 971-981, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31210124

RESUMO

Collagen microstructure is closely related to the mechanical properties of tissues and affects cell migration through the extracellular matrix. To study these structures, three-dimensional (3D) in vitro collagen-based gels are often used, attempting to mimic the natural environment of cells. Some key parameters of the microstructure of these gels are fiber orientation, fiber length, or pore size, which define the mechanical properties of the network and therefore condition cell behavior. In the present study, an automated tool to reconstruct 3D collagen networks is used to extract the aforementioned parameters of gels of different collagen concentration and determine how their microstructure is affected by the presence of cells. Two different experiments are presented to test the functionality of the method: first, collagen gels are embedded within a microfluidic device and collagen fibers are imaged by using confocal fluorescence microscopy; second, collagen gels are directly polymerized in a cell culture dish and collagen fibers are imaged by confocal reflection microscopy. Finally, we investigate and compare the collagen microstructure far from and in the vicinities of MDA-MB 23 cells, finding that cell activity during migration was able to strongly modify the orientation of the collagen fibers and the porosity-related values.


Assuntos
Fenômenos Biomecânicos , Fenômenos Químicos , Colágeno/metabolismo , Hidrogéis , Engenharia Tecidual/métodos , Alicerces Teciduais , Linhagem Celular , Movimento Celular , Humanos , Imageamento Tridimensional , Microscopia Confocal , Microscopia de Fluorescência
6.
Biophys J ; 116(7): 1305-1312, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30902366

RESUMO

Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.


Assuntos
Adaptação Fisiológica , Movimento Celular , Células Epiteliais/fisiologia , Matriz Extracelular/química , Estresse Mecânico , Linhagem Celular Tumoral , Forma Celular , Colágeno/química , Humanos , Lamina Tipo A/metabolismo
7.
J Mech Behav Biomed Mater ; 83: 52-62, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29677555

RESUMO

Osteoblast migration is a crucial process in bone regeneration, which is strongly regulated by interstitial fluid flow. However, the exact role that such flow exerts on osteoblast migration is still unclear. To deepen the understanding of this phenomenon, we cultured human osteoblasts on 3D microfluidic devices under different fluid flow regimes. Our results show that a slow fluid flow rate by itself is not able to alter the 3D migratory patterns of osteoblasts in collagen-based gels but that at higher fluid flow rates (increased flow velocity) may indirectly influence cell movement by altering the collagen microstructure. In fact, we observed that high fluid flow rates (1 µl/min) are able to alter the collagen matrix architecture and to indirectly modulate the migration pattern. However, when these collagen scaffolds were crosslinked with a chemical crosslinker, specifically, transglutaminase II, we did not find significant alterations in the scaffold architecture or in osteoblast movement. Therefore, our data suggest that high interstitial fluid flow rates can regulate osteoblast migration by means of modifying the orientation of collagen fibers. Together, these results highlight the crucial role of the matrix architecture in 3D osteoblast migration. In addition, we show that interstitial fluid flow in conjunction with the matrix architecture regulates the osteoblast morphology in 3D.


Assuntos
Movimento Celular , Líquido Extracelular/metabolismo , Osteoblastos/citologia , Animais , Bovinos , Técnicas de Cultura de Células/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...